
HOW TO RUN A BEOWULF

Cwik 1

Walt Ligon: Parallel Virtual File Systems

http://ecewww.eng.clemson.edu/parl/walt/

Rusty Lusk: Using MPI

http://www-fp.mcs.anl.gov/~lusk/

Bill Gropp: Parallel Applications for Cluster Computing

http://www-unix.mcs.anl.gov/~gropp/

Phil Merkey: More Parallel Applications for Cluster Computing

http://cesdis.gsfc.nasa.gov/people/merk/merk.html

Jack Dongarra: The ATLAS Project

http://www.netlib.org/utk/people/JackDongarra

Tom Cwik: Welcome

http://hpc.jpl.nasa.gov

Thomas Sterling: Introduction to Beowulf-Cluster Computing

http://www.cacr.caltech.edu/~tron/

Don Becker: Networking for Cluster Computing

http://cesdis.gsfc.nasa.gov/people/becker/whoiam.html

Jan Lindheim: Middleware Systems

http://www.cacr.caltech.edu/~lindheim/

Miron Livny: Condor - High Throughput Computing

http://www.cs.wisc.edu/~miron/

James Jones: the Portable Batch System

http://www.nas.nasa.gov/~jjones/home.html

David Jackson: The Maui Scheduler

http://www.mhpcc.edu/maui/

UPDATES AT: http://hpc.jpl.nasa.gov/PS/index.html

November 16, 1999 How to Run a Beowulf - Sterling et al. 1

Introduction to:

How to Run a Beowulf

Dr. Thomas Sterling
(and many many friends)

California Institute of Technology
and

NASA Jet Propulsion Laboratory
November 16, 1999

Presented as a tutorial at
Supercomputing’99:

November 16, 1999 How to Run a Beowulf - Sterling et al. 3

And this is the good news.

November 16, 1999 How to Run a Beowulf - Sterling et al. 4

BEOWULF-CLASS
SYSTEMS

• Cluster of PCs
– Intel x86

– DEC Alpha

– Mac Power PC

• Pure M2COTS

• Linux or other open source Unix-like O/S
– e.g. BSD, Solaris

• Message passing programming model
– PVM, MPI, BSP, homebrew remedies

• No longer just single user environments

• No longer just for science and engineering
applications

November 16, 1999 How to Run a Beowulf - Sterling et al. 5

Beowulf-class Systems
A New Paradigm for the Business of Computing

• Brings high end computing to broad ranged problems
– new markets

• Order of magnitude Price-Performance advantage

• Commodity enabled
– no long development lead times

• Low vulnerability to vendor-specific decisions
– companies are ephemeral; Beowulfs are forever

• Rapid response technology tracking

• Just-in-place user-driven configuration
– requirement responsive

• Industry-wide, non-proprietary software environment

November 16, 1999 How to Run a Beowulf - Sterling et al. 6

Multiplicity of Roles for Beowulf
• Single user moderate-scale system

• Dedicated single-application system

• Educational laboratory platform

• Web servers

• Data archiving and retrieval

• Visualization, image processing, rendering, special effects

• Genetic programming

• Computer computer simulators

• Shared multi-user multitasking

• Throughput turbocharging

• Teraflops supercomputer

Beowulf Hardware on a Slide
• Requirements and priorities

– performance, size, cost, working environment,
applications

• Processor

• Motherboard and chip set

• Memory capacity

• Disk
– type, capacity, layout

• Packaging

• Network
– class, NIC, switch, topology

• External interface

• alternatively: choose a

The Beowulf Delta
looking back

• 6 years

• Clock rate: X 6

• flops: X 100 per processor

• #processors: X 32

• Networking: X 100

• Memory: X 10

• Disk: X 30

• price-performance: X 140

• system performance:
>3000

Beowulf at Work

Wire We Here?
What makes Beowulf Run
• Operating system: Linux

• Network drivers: Fast /Gigabit Ethernet

• System initialization

• System management

• Distributed job scheduling: Condor, Maui

• System administration: PBS

• Parallel file system

• Distributed programming library: MPI

• Programming methodology

• Libraries: Atlas

1st printing: May, 1999

2nd printing: Aug. 1999

MIT Press

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 1

Building a Beowulf System

Jan Lindheim

lindheim@cacr.caltech.edu

CACR, California Institute of Technology

and

MCS, Argonne National Laboratory

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 2

Overview

" Software Installation
" Tools

" Customization

" Sample Setup

" Cloning Process
" Creating a Node Image

" Configuring bootpd

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 3

Tools for making a Beowulf

" From your favorite Linux or BSD distribution, you
need:

" Basic system software including networking software

" Kernel sources: http://kernelnotes.org

" Compilers and libraries

" xntp or similar time synchronizer

" autofs for mounting network file systems

" rsync or similar tool for file synchronization

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 4

Additional Software Needed

" Message Passing Interface (MPI)
http://www−unix.mcs.anl.gov/mpi

" Parallel Virtual Machine (PVM)
http://www.epm.ornl.gov/pvm

" home grown scripts to maintain system (ex. brsh)

" system monitoring software (ex. bwatch or
CACR’s bmon)

" http://beowulf−underground.org (brsh, bwatch)

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 5

Classes of Services
(Node Types)

" In a typical Beowulf Cluster we will have at least
two classes of services:

" Front−end server

" Compute node

" Optionally we may have:
" Development nodes

" Storage nodes

" Router nodes

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 6

Install and Customize OS

" For each class of service in your cluster, install
the OS of your choice and configure it to do its
special task(s).

" In the rest of this talk we base the examples on
using RedHat Linux, setting up a Front−End
Server with Compute nodes

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 7

Sample Front−End Server:
Configuration

" Holds home directories

" Holds communication packages (MPI, PVM)

" Performs time synchronization to the outside
world

" Controls access to compute nodes

" Provides a full development environment

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 8

Sample Front−End Server: Setup

" Install the OS with network services enabled.
Make sure to include the packages: knfsd,
knfsd−clients, autofs and xntp

" Configure NFS client and server software:
 # /etc/exports

 /home 192.168.0.0/255.255.255.0(rw,no_root_squash)

" Install and configure Automounter:
 # /etc/auto.beowulf

 n000 −fstype=nfs n000:/scratch

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 9

Sample Front−End Server: Setup
Cont.

" Add an entry to /etc/auto.master:
 # /etc/auto.master

 /data /etc/auto.beowulf −timeout=1200

" Configure xntp get time from the outside and
provide time service to the compute nodes:

 # /etc/ntp.conf

 server time.cacr.caltech.edu

 broadcast 192.168.0.255

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 10

Sample Front−End Server: Setup
Cont.

" Configure a root NFS for the nodes.
http://www.cacr.caltech.edu/beowulf/tutorial/NodeCloner.tar.gz

 will help you in this process.

" Install bootpd

 ftp://tsx−11.mit.edu/pub/linux/packages/net/netboot

 or dhcpd (included with RedHat Linux)

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 11

Sample Compute Node:
Configuration

" Mounts home directories from front−end server

" Mounts communication packages from front−end
server

" Gets time synchronization from front−end server

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 12

Sample Compute Node: Setup

" Install basic system with network services
enabled. Make sure to include knfsd,
knfsd−clients, xntp and autofs.

" Install all run−time libraries used on server

" Configure autofs to mount home directories from
front−end server:

 # /etc/auto.beowulf

 home −fstype=nfs front−end:/home

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 13

Sample Compute Node:
Setup Cont.

" Add and entry for auto.beowulf in /etc/auto.master
 # /etc/auto.master

 /data /etc/auto.beowulf −timeout=1200

" Let /home on the compute node be a soft link to the
autofs managed file system:

 rm −fr /home; ln −s /data/home /home

" Configure time synchronization:
 #/etc/ntp.conf

 broadcastclient

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 14

Why use bootp or dhcp for Cloning
Environment?

" Various methods for installing a cluster include:
" Step−by−step installation on each node

" Install system on one node. Connect hard disks from
the rest of the nodes to the prototype node and
perform a disk−to−disk copy (dd)

" Install system on one node: boot the nodes diskless to
partition the hard disk and copy system image onto its
hard disk

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 15

Why use bootp or dhcp for Cloning
Environment?

" The first two methods are obviously very simple,
but very time consuming.

" Configuring bootp or dhcp is more difficult, but
the time savings are great.

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 16

Preparing the system for Cloning
(Node Image)

" Make tar−balls of all system partitions from your
prototype compute node. Store these under the
NFS root which nodes will mount during cloning:
tar cvflz /scratch/root.tar.gz /

tar cvflz /scratch/usr.tar.gz /usr

" Make a linux kernel with built−in support for
ramdisk, bootp, root NFS, and drivers for your
particular hardware (SCSI and network adapters)

" Register each compute node’s MAC address

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 17

Making the Boot Floppy

" On the server, insert a floppy and perform the
following commands:

" mknod /dev/nfsroot b 0 255

" rdev bzImage /dev/nfsroot

" dd if=bzImage of=/dev/fd0 bs=512

where bzImage is a new kernel built from the kernel

source, located under /usr/src/linux

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 18

Configuring Bootpd

" Sample bootptab file:
 # /etc/bootptab

 .pentium:sa=192.168.0.250:gw=192.168.0.254:ra=192.168.0.255: \
:sm=255.255.255.0:ht=ether:hn:dn=cacr.caltech.edu: \
:rp=/home/rootnfs/pentium

 .alpha:sa=192.168.0.250:gw=192.168.0.254:ra=192.168.0.255: \
:sm=255.255.255.0:ht=ether:hn:dn=cacr.caltech.edu: \
:rp=/home/rootnfs/alpha

 p000:ha=0080c83e2a11:tc=.pentium

 a000:ha=0080c86386a8:tc=.alpha

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 19

The Cloning Process

" Boot from the previously created floppy

" Through bootp or DHCP the node receives an IP
address and path to its root NFS file system

" The node mounts root from server over NFS

" An init script will partition hard disk and extract tar
archives to the proper partitions and customize
network name and address and reboot the node

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 20

Benefits of this Cloning
Environment

" Stores sets of partition tar−balls as backups

" Can quickly rebuild a node after hard disk failure
or file system corruption

" By keeping a cloning kernel on each node’s disk,
we can also tell lilo to use this to rebuild the node
on next reboot. No floppy is needed!

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 21

Useful Linux & Beowulf Web Pages

" http://linuxlinks.com

" http://kernelnotes.org

" http://www.beowulf.org

" http://www.cacr.caltech.edu/beowulf

" http://metalab.unc.edu/mdw/HOWTO

" http://kt.linuxcare.com

Date: Nov. 15, 1999
File: /home/lindheim/Office51/work/sc99−3.sdd

Presenter: Jan Lindheim Slide 22

Conclusion

" Initial time investment in server configuration
pays off in future efficiency and expansibility

" Most tools needed are freely available on the net

" Documentation is plentiful

" Custom solutions are easily implemented

" Anybody who has done some unix administration
can easily set up and maintain a simple cluster

2672 Bayshore Parkway, Suite 810
Mountain View, CA 94043
(650) 967-4MRJ
pbs.mrj.com

MRJ TECHNOLOGY SOLUTIONS

MRJ Technology Solutions

The Portable Batch System (PBS):
A Technical Overview

James Patton Jones
jjones@pbs.mrj.com

MRJ Technology Solutions

SC99 Booth #871

15 November 1999

See also: http://pbs.mrj.com 11/99

PBS Overview MRJ Technology Solutions

PBS: The Leading OpenSource Batch System:
– Multiple User Interfaces (CLI, GUI)

– Job-interdependency

– Cross System Scheduling

– Security and Access Control Lists

– Job Accounting

– Dynamic Distribution of Workload

– Automatic Load-leveling

– Parallel Job Support

– Automatic File Staging

– Comprehensive (and Documented) API

See also: http://pbs.mrj.com 11/99

PBS Overview MRJ Technology Solutions

PBS: System Overview

• A client-server TCP-based system

• Can run on a standalone system, or in a
distributed, heterogenous UNIX environment

• Utilizes UNIX security augmented by Access
Control Lists (per-user, -group, -host, -domain)

• Completely modular (e.g. Security model can be
replaced; username-mapping hooks provided, etc.)

• Kerberization of PBS in progress

• Supported on: Solaris, SunOS, IRIX, AIX, Digital
Unix, UNICOS, Linux, FreeBSD, NetBSD, ...

See also: http://pbs.mrj.com 11/99

PBS Overview MRJ Technology Solutions

PBS Components

• PBS Daemons
– batch server (maintains queues, jobs, ACLs)

– resource monitor + mini-server (executes/monitors jobs)

– scheduler (runs jobs according to local policy)

• PBS User Commands
– qsub, qstat, qdel, qalter, qhold, qrels, ...

• PBS Administrator Commands
– qmgr, pbsnodes, qrerun, qselect, qmove, ...

See also: http://pbs.mrj.com 11/99

PBS Overview MRJ Technology Solutions

Jobs
Batch
Server

Machine
Oriented
Miniserver

Batch Job

Scheduler

External
Scheduler
(system/site
 specific)

Kernel Batch
Commands

Types of Schedulers:

BASL - interpreted, rule based
TCL - interpreted, script based
 C - compiled

Resource
Monitor

How the PBS Components Interact

See also: http://pbs.mrj.com 11/99

PBS Overview MRJ Technology Solutions

The PBS Scheduler Module
• Default scheduler is general purpose, offering a variety

of (selectable) scheduling algorithms, including:
– first-in, first-out, round robin, load-balancing, load-stacking,

pseudo fair share

• Several system-specific schedulers are included:
– Cray UNICOS C90 and J90, IBM SP (with dynamic

backfilling), SGI PowerChallenge, SGI Origin2000

• The scheduler is designed to be easily extended. Three
interfaces are provided to enable any scheduling policy:
– TCL/tk, BASL (a compiled scheduling language), and

– C (most PBS schedulers are written in C using the PBS API)

See also: http://pbs.mrj.com 11/99

PBS Overview MRJ Technology Solutions

Acquiring PBS

• Official distribution site: pbs.mrj.com

• PBS is distributed in source code form
– also available in Redhat Linux RPM format

• No-cost registration and download

• Documentation is included:
– Administrator’s Guide, External Reference Spec.,

Internal Design Spec.

• pbs-users mailing list archived on website

• FAQ, Tips For Users, Advice for Administrators…
also on website

See also: http://pbs.mrj.com 11/99

PBS Overview MRJ Technology Solutions

Optional PBS Support Services From MRJ
• Systems Analysis

– Requirements analysis of computational needs

– Recommendations of scheduling policies

– PBS-Site integration

• PBS Customization
– Customization of scheduling policies

– Optimization of scheduling and system configuration

– Custom installations

• PBS Support and Maintenance
– Hourly, Annual, and Extended (24x7 coverage) support contracts

• Customer Education
– PBS User Training, PBS Administrator Training

– PBS Internals/Developer Training

Cluster Resource Management

• Resource management is more than FIFO
scheduling

Cluster Resource Management

David B Jackson

Cluster Tutorial-SC99

Nov 14, 1999

Maui Scheduler Features

• Scheduling Optimization

• Allocation Management

• Advanced Reservations

• Multiple Resource Management Interfaces

• SMP Enabled

• Extensive Policy Control Facilities

Initial Clusters

• Homogenous

• Autonomously Managed

• Single User Workload

• FIFO Scheduling

• Excess Capacity

• Local Usage

Cluster Evolution

• Multiple sources of management policies

• Multi-User workload

• Backlog of workload

• Heterogeneous resources

• Fragmented resources

• Requirements for advanced functionality

• Remote users/collaborations

Cluster Resource Management Issues- Optimizing
Scheduling and Allocation Policies for Multiple Local

and Remote Users Competing for Limited,
Fragmented, Heterogeneous Resources under Multiple

Political Policy Constraints

• Fairness (throttling/fairshare)

• Minimizing queue time/maximizing utilization

• Prioritizing workload

• Guaranteeing service

Cluster Political Policies

• Resource access (where can they run)

• Prioritization (who runs first)

• Allocation (how much can they use)

• Functionality Access (who uses what
function)

Cluster Scheduling Issues

• Minimizing resource fragmentation
(heterogeneous resources)

• Maximizing locality

• Queue Optimizations (backfill)

• Active Job Optimizations (preemption, gang-
scheduling, etc)

• Utilization/turnaround optimizing prioritizations.

Cluster Functionality

• Preemption policies

• Advance Reservations

– deadline scheduling

– special project handling

• Metascheduling (Remote/Collaborative workload)

• Co-Allocation of compute resources

• Co-Allocation of non-compute resources

Maui Scheduler

• Open Source

• Fairness Policies

– Throttling

– Fairshare

• Prioritization Policies

– Resources

– Utilization

– QOS

– Credential

• Optimizations

– Backfill

– Node Allocation

Maui Scheduler - Cont’d
• Allocation Control

– Historical utilization based prioritization

– Allocation bank interface (QBank)

– Multiple accounts per user/Multiple users per account. (w/ Kitty and
Reserved subaccounts)

– Local account administration

– Allocation Expiration/Real Time Allocation Checking/Debiting

• Advanced Reservations
– Standing Reservations

– Interactive Reservations

• Internal Diagnostics

• Extensive Statistics

• PBS/Loadleveler support

Conclusions

• Clusters start easy but quickly evolve

• Must look to the future when designing
clusters

• Tools are available to assist in this effort

� � ��� �� � � � � � � � 	�
 � � � � � � �� � 	 �� �

��� � 	�� � � � � �� 	�� � � � �
 	�
 � �

��� �� � ��� ! � ! "# $# % %

& �' � � �)(�* ' + , �� (+�.- ' (# (% (�' + , � � $ ' � � ' / 0 &* # � 1

2 �)(3 % ! 4 ! ��5 (' % �� /76 2 �)(3 % ! 6 8 - � , 2 � ' � � ! �

,� �:9 ; < <(+(>= + �)(3 % ! = ("- <9 �' � <

� � 	 � � � � � ?

@ & �' � � �)(� A �)(% /% � (3

B C � $ � � ! � 3(%9 � +(

B & , /% � + � � " � % � ' � $- � � ! D " � � �

@ 4 % ('FE �)(5 (� � 39 �)(3(! � � � � !

@ G 3 (% % � � (9 � % % � ! � � � $' �' / " (9 (! ")(! + �(%

@ * + +(% % � $ � (H �� , (I � % � � ! � $ � ! �' �(%

J ��K � 	 L � � 	K �� K M � � �

@ NO OP E NO OQ R &S T 8 � � 9 &S U � 39 � (3(! � (" $ /* ' � + V �- 3('

@ NO O Q E NO OW R &S T 8' (E � 39 � (3(! � (" H �� ,X 2 & ! * �9 , � %

@ NO O W E NO OY R &S T 89 ' � (" � � � ! - I 6 C " " �' " V(H- � D 0Q ZY [% 1

@ NO O Y E 9 ' (% (! � R U � \ ' ' (' � � ! ��] � � � ! 6 2 � � $' � ' / %- 9 9 ' � � " " ("

� � � J � ^ � � 	 � ^ 	
 � �

@ 8(� D + 9 (' � � � ! � " � (3 ! % , � ! " �)(A �)(� + +(% % (%

B U � ! � � (' _ � (3 ! 9 (' D ' 3 % 9 (' 3 � % % � ! + ,)(+ ` � ! � D ' A �)(

� + +(% % (% 6 3 � ! � � (% 9 (! � ! � 6 + � % � ! � 6 +' (� � � ! � 6 � ! "' (3 5E� ! � A �)(%

B a <b _ � (3 ! % 9 (' D ' 3 A �)(a <b ! a <b ! " (% � ! " � ' � ! % D('

" � � � � � 9 9 � � + � � � ! � � % `%

@ � � $' �' / D D- ! +� � ! + � � � % 9 ' 5 � " (% � � ! ` $(� H((! � 9 9 � � + � � � ! %

� ! " &S T 8 " � (3 ! %

@ �' � 9 9 (' % � � � H (I � % � � ! � $ � ! �' �(% � 9 (' � � (! &S T 8 A �)(%

� � � J � ^ � � 	 � ^ 	
 � �

PVFS Library

ApplicationApplication

PVFS Library

I/O Daemon

File Data

I/O Daemon

File Data

Manager

Metadata

 	K � � � c � � � � d � 	e�

@ _(+ � % � ! % ;

B 4 % ((I � % � � ! � A � (% /% � (3 % ! " � % `% � + � � � a < b ! " (%

B 4 % (� % (9 �' � � (9 , /% � + � � A �)(D ' (� + ,9 � ' � D � &S T 8 A �)(

B C ��5 (A �)(% - ! ��f - (� " (! � � A(' % H �� , � ! % + 9 (D A �)(% /% � (3

@ # � 3 � A + � � � ! % ;

B 4 G ag 3 3 � 9 0 1 6 ' (� " 0 1 6 H' �� (0 1 6 (� += + � ! $(- % (" D ' a < b

B &S T 8 , � % ! " �' (+� + ! � ' � 5 (' + � + , � ! � ' $ � + ` � � � + �E� � !

 	K � � � c � 	e� � � 	e�

@ U (� � " � � � � % � ! D ' 3 � � � ! " (% +' � $ � ! � � A �)(;

B &(' 3 � % % � ! % 6 3 " � A + � � � ! � � 3 (%

B & , /% � + � � " � % � ' � $- � � ! D " � � �

@ b ' ��� � ! � � � / % � ' (" � ! � % � ! � � (A �)(, (� " $ / 3 � ! � � ('

@ G H % � ' (" � ! � % , �' (" G T 8 A �)(% /% � (3 ;

B C ��5 (% - % - ! ��f - (! � 3 (%9 � +(

B &' 5 � " (% " �' (+� ' / % � ' - +�.- ' (D ' � 9 9 � � + � � � ! % � % ((

B � � � ,� (! % � � " ! 3 � ! � � ('

Jih h � � ^� 	 �K � � j� 	 � � M� ^ �

@ a! k- (! +(% ;

B 2 , �' � % 3 � &' \e(+� R + 3 3 ! � + +(% % 9 � � � (' ! %

B S (% � � &' \ (+� R � � � + � �9 � ' � �� � ! � ! � D A � (%

@ & �' � �� � ! (" A �)(� ! � (' D� +(;

B 8 � 39 �)(9 �' � �� � ! � ! � 6 � ! " (9 (! ")(! � D9 , /% � + � � " � % � ' � $- � � !

B _ �' (+� %- 9 9 ' � D ' % � 39 � (% � ' � " (" � + +(% % (%

B T �� % l _ 3 � � ' �I � 9 9 � � + � � � ! % H(� �

��� � 	 � 	 �K � � � c � � � � �

Offset Group Size

Stride

After Read

After Lseek

After Read

 	nm K Mm oK � � j� 	 � � M� ^ �

@ U- �� �E _ � 3 (! % � ! � � V � + ` a! � (' D� +(0 U _ V a 1

B* � � H% � A �)(� $(5 �(H(" � % � 3- �� � " � 3 (! % � ! � � �' ' � / D

' (+ ' " %

B &' 5 � " (% (� % / � + +(% % � ! !E + ! � ��� - - % " � � � H �� , - � " �E' (+� � /9 � ' � �� � ! � ! � � , (A �)(

B* � � H% - % (' %9 (+ � A(" $- p(' � ! � D A �)(" � � �

q ��K ^ r � � c s � 	 � d q j

ne2

ne1

D
im

en
si

o
n

 2

Dimension 1

(3,0)(2,0)(0,0)

(5,2)

(D = 2, rs = 500, ne1 = 2, nb1 = 6, ne2 = 3, nb2 = 3, bf1 = 2, bf2 = 1)

= 1 record = 1 block = 1 superblock

J ^ ^ � � � � � c � 	 � tiu � � 	 � � c q � � � � � � �

@ G ' 3 � � � / H , (! � ! � 9 9 � � + � � � ! 9 (' D ' 3 % a <b ;

BX ,)(� 9 9 � � + � � � ! - % (% � % /% � (3 + � � � � 9 (' D ' 3 a < b

B �' � 9 9 (' % � ! � , (2 � � $' � ' / + � � + , � , � % � ! "9 (' D ' 3 � , (

� +�.- � � + � � �

@ b - ' 3 " � A + � � � ! % ;

B �(' (H' � (� , (H' � 9 9 (' % � � (� - % + � � + , a < b + � � � %

B �(`((9 � ,)(% � � � (D A � (% � ! - % (' %9 � +(

B & � % % ! !E &S T 8 a < b ! � � , (% /% � (3 + � � � % 6 , � ! " �)(&S T 8

a <b � ' � ! %9 � ' (! � � /

 ^� � � � c � � � j v w K � � �

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
ps

)

Number of Compute Nodes

4 ION, 8MB writes
4 ION, 8MB reads

8 ION, 16MB writes
8 ION, 16MB reads

16 ION, 32MB writes
16 ION, 32MB reads

MPI and Beowulf

Rusty Lusk

Argonne National Laboratory

November 1999

Outline

• About MPI itself

• MPI implementations on Beowulf systems

• An introduction to MPI via examples

• MPI-based libraries

• Sources for MPI information

• Demo

What is MPI?
• A message-passing library specification

– extended message-passing model
– not a language or compiler specification
– not a specific implementation or product

• For parallel computers, clusters, and
heterogeneous networks

• Full-featured
• Designed to provide access to advanced parallel

hardware for
– end users
– library writers
– tool developers

Why Does Beowulf Have MPI?
• MPI enables portable parallel libraries

– provides leverage
– can use same libraries as on more expensive parallel

supercomputers

• You can write your own parallel programs using
the powerful and general message-passing model
of parallel computation.

• Portability:
– Develop on heterogeneous workstation networks; run

on Beowulf
– Develop on Beowulf; run on teraflop machines

MPICH on Beowulf
• MPICH is a freely available, high-performance, portable

implementation of MPI for nearly all parallel machines.

• On Beowulf, MPICH communicates using TCP/IP.

• Includes all source, user manual, man pages, many
example programs

• Build and run on Beowulf (as on any machine) with:
configure

make

make install prefix=/usr/local/mpi (or wherever)

mpicc -o myprog myprog.c

mpirun -np 32 myprog

LAM - An Alternate
Implementation of MPI

• LAM is another implementation of MPI on
Beowulf systems

• Available from Notre Dame at
http://www.cs.nd.edu/lam

Why Use MPI?

• MPI provides a powerful, efficient, and
portable way to express parallel programs

• MPI was explicitly designed to enable
libraries…

• … which may eliminate the need for many
users to learn (much of) MPI

A Minimal MPI Program (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 printf("Hello, world!\n");
 MPI_Finalize();
 return 0;
}

A Minimal MPI Program
(Fortran)

program main
use MPI
integer ierr

call MPI_INIT(ierr)
print *, 'Hello, world!'
call MPI_FINALIZE(ierr)
end

Notes on C and Fortran
• C and Fortran bindings correspond closely

• In C:
– mpi.h must be #included
– MPI functions return error codes or MPI_SUCCESS

• In Fortran:
– mpif.h must be included, or use MPI module (MPI-2)

– All MPI calls are to subroutines, with a place for the
return code in the last argument.

• C++ bindings, and Fortran-90 issues, are part of
MPI-2.

Running MPI Programs

• The MPI-1 Standard does not specify how to run an MPI

program, just as the Fortran standard does not specify how

to run a Fortran program.

• In general, starting an MPI program is dependent on the

implementation of MPI you are using, and might require

various scripts, program arguments, and/or environment

variables.

• mpiexec <args> is part of MPI-2, as a

recommendation, but not a requirement

– write your MPI implementor

Finding Out About the
Environment

• Two important questions that arise early in a parallel
program are:

– How many processes are participating in this
computation?

– Which one am I?

• MPI provides functions to answer these questions:
– MPI_Comm_size reports the number of processes.

– MPI_Comm_rank reports the rank, a number between 0
and size-1, identifying the calling process

Better Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Better Hello (Fortran)

program main
use MPI
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)
end

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
– How will “data” be described?

– How will processes be identified?

– How will the receiver recognize/screen messages?

– What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

MPI is Simple

• Many parallel programs can be written using just
these six functions, only two of which are non-
trivial:
– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

– MPI_COMM_RANK

– MPI_SEND

– MPI_RECV

• Point-to-point (send/recv) isn’t the only way...

Introduction to Collective
Operations in MPI

• Collective operations are called by all processes in
a communicator.

• MPI_BCAST distributes data from one process
(the root) to all others in a communicator.

• MPI_REDUCE combines data from all processes
in communicator and returns it to one process.

• In many numerical algorithms, SEND/RECEIVE
can be replaced by BCAST/REDUCE, improving
both simplicity and efficiency.

Example: PI in Fortran - 1
 program main
 use MPI
 double precision PI25DT
 parameter (PI25DT = 3.141592653589793238462643d0)
 double precision mypi, pi, h, sum, x, f, a
 integer n, myid, numprocs, i, ierr
c function to integrate
 f(a) = 4.d0 / (1.d0 + a*a)
 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
 10 if (myid .eq. 0) then
 write(6,98)
 98 format('Enter the number of intervals: (0 quits)')
 read(5,99) n
 99 format(i10)
 endif

Example: PI in Fortran - 2
 call MPI_BCAST(n, 1, MPI_INTEGER, 0,
 + MPI_COMM_WORLD, ierr)
c check for quit signal
 if (n .le. 0) goto 30
c calculate the interval size
 h = 1.0d0/n
 sum = 0.0d0
 do 20 i = myid+1, n, numprocs
 x = h * (dble(i) - 0.5d0)
 sum = sum + f(x)
 20 continue
 mypi = h * sum
c collect all the partial sums
 call MPI_REDUCE(mypi, pi, 1, MPI_DOUBLE_PRECISION,
 + MPI_SUM, 0, MPI_COMM_WORLD,ierr)

Example: PI in Fortran - 3
c node 0 prints the answer
 if (myid .eq. 0) then
 write(6, 97) pi, abs(pi - PI25DT)
 97 format(' pi is approximately: ', F18.16,
 + ' Error is: ', F18.16)
 endif
 goto 10
 30 call MPI_FINALIZE(ierr)
 end

Example: PI in C -1
#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
 if (myid == 0) {
 printf("Enter the number of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

Example: PI in C - 2
 h = 1.0 / (double) n;

 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (myid == 0)
 printf("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
}
MPI_Finalize();

 return 0;
}

Alternative set of 6 Functions for
Simplified MPI

– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

– MPI_COMM_RANK

– MPI_BCAST

– MPI_REDUCE

• What else is needed (and why)?

MPI Information Sources

• Official Documents

– http://www.mpi-forum.org

• Unofficial, but useful general MPI sites

– http://www.mcs.anl.gov/mpi

– http://www.erc.msstate.edu/mpi

Book Versions of the Standard

Books on Programming with MPI

• Designing and Building Parallel Programs, by Ian Foster
• Parallel Programming with MPI, by Peter Pacheco
• Using MPI, by William Gropp, Ewing Lusk, Anthony

Skjellum
• Practical MPI Programming, by Yukiya Aoyama and Jun

Nakano (http://www.redbooks.com)

Just Out!

MPI Library Sampler
(From http://www.mcs.anl.gov/mpi/libraries.html)
• PETSc

– sparse linear systems, nonlinear equations from PDE’s,
unconstrained optimization

• PGAPack
– general-purpose genetic algorithm library

• ScaLAPack
– parallel dense linear algebra

• MSG
– structured grids in Fortran

• MPI-RGL
– More regular grids

More MPI Libraries
• Parallel Level 3 BLAS

– parallel basic linear algebra subroutines

• GCL/MPI
– Lisp interface for master/slave algorithms

• Aztec
– solving linear systems with Newton-Krylov methods

• DOUG
– Domain decomposition On Unstructured Grids

• FFTW
– C FFT library

• MatheMatrix (commercial)
– solving linear systems

Sources of MPI Research Papers

• This conference
– Krakow

– Liverpool

– Barcelona

• The MPI Developers Conference
– Notre Dame

– Atlanta

• Web sites
– http://www.mcs.anl.gov/mpi/papers/paperlist.html

• (mainly papers on using mpi, a few on research)

• please send us pointers to mpi research papers

Manager-Worker Algorithms

• One process coordinates the work of others.

• The manager divides up the total work into
units for workers to work on and sends units
to idle workers.

• When a worker completes a unit of work, it
sends the result to the manager and requests
more work to do.

• There is no communication among the
workers.

Demo

• Running the simple examples

• A sophisticated manager-worker example

Programming Models for Clusters

Parallelizing compilers do not exist!
It is up to the user to handle this coarse grain,
multi-computer with (sufficiently) high bandwidth
and with high latency.
HPF is available
Message Passing Libraries: (The Standards)
MPI (Message Passing Interface)
PVM (Parallel Virtual Machine)
Other systems

• BNM — Beowulf Nominal Messages
• BSP — Bulk Synchronous Protocol
• DIPC — Distributed IPC
• NVM-DSM — Network Virtual Memory
• Threaded-C — Multithreaded Programming

Model
• RES, UPC, · · ·

Use whatever your friends are using.

Communication Takes Time

A reasonable approximation to the total time for a
message is

ttotal = tl +L/r

where tl is the latency,
L is the length of the message and
r is the bandwidth.
Define L1/2 be the length such that ttotal = 2tl
L1/2 = rtl

Use messages longer than L1/2 whenever possible.

ESS Application Survey

PPM (Piece-Wise Parabolic Method)
N-body Tree Code
PIC (Particle in Cell)
SAR (Synthetic Aparture Radar
Spectral Methods: FFT’s
PARAMESH (Adaptive Mesh Refinement)
HSEG (Hierarchical SEGmentation)
MM5

It is Easy to Get Started

Lots of programs only need the following:

MSG INIT – join the party
MSG FINALIZE – shut everything down
MSG NUM PROCS – number of processors
MSG MY NAME – the individuals name
MSG SEND – point-to-point send
MSG RECV – point-to-point recv

Next Step: Collective Operations

Collective Operations involve all the processors:

MSG BCAST – one process sends data to all others
MSG MANY TO MANY – variation on broadcast
MSG REDUCE – data from all the processors is
combined into a single value on one processor.

Don’t write your own
Consider replacing SEND/RECV pairs with
BCAST/REDUCE

Next Step: Optimization

Try not to use short messages
Try not to use long messages
Try to trade computation for communication
Try to overlap communication with computation

• MPI Isend – send and immediately return
• MPI Irecv – receive and immediately return
• MPI Wait – wait on one of the above
• MPI Test – test one of the above

Things to Consider
No such thing as an embrassingly parallel problem.
Application Level parallelism sometimes yields the
greatest scientific impact
Cycle stealing is the most cost effective comput-
ing, but a cluster is probably easier to use.
Balanced tightly coupled MPP’s are probably easier
to use, but a cluster may give you more compute
power.
Asymptotic results can be misleading—beware your
intuition

1

Automatically Tuned LinearAutomatically Tuned Linear
Algebra Software - ATLASAlgebra Software - ATLAS

Clint Whaley
Antoine Petitet
Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory
http://www.netlib.org/utk/people/http://www.netlib.org/utk/people/JackDongarraJackDongarra//

2

High-Performance ComputingHigh-Performance Computing
DirectionsDirections

♦ Clustering of shared memory machines for
scalability

„ Emergence of PC commodity systems
» Pentium/Alpha based, Linux or NT driven
» “Supercomputer performance at mail-order prices”

„ Beowulf-Class Systems (Linux+PC)
„ Distributed Shared Memory (clusters of

processors connected)
„ Shared address space w/deep memory hierarchy

♦ Efficiency of message passing and data parallel
programming

„ Helped by standards efforts such as PVM, MPI,
Open-MP and HPF

♦ Many of the machines as a single user environments
♦ Pure COTS

3

Where Does the Performance Go? orWhere Does the Performance Go? or
Why Should I Cares About the Memory Hierarchy?Why Should I Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

1 0

1 0 0

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU
1

9
8

2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

 Memory Hierarchy Memory Hierarchy
♦ By taking advantage of the principle of locality:

„ Present the user with as much memory as is available in the
cheapest technology.

„ Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache
1s 10,000,000s

 (10s ms)
100,000 s
(.1s ms)

Speed (ns): 10s 100s

100s

Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
 (10s sec)

10,000,000 s
(10s ms)

Ts

Distributed
Memory

Remote
Cluster

Memory

5

PerformancePerformance
SoftwareSoftware
♦ Computing hardware doubles its

speed every eighteen months.
♦ Yet it often takes more than a

year for software to be
optimized or "tuned" for
performance on a newly released
CPU.

♦ The job of optimizing software
to exploit the special features
of a given CPU has historically
been an exercise in hand
customization.

Registers

L 1 Cache

L 2 Cache
L 3 Cache

Local Memory

Remote Memory

Secondary Memory

6

Performance Issues -Performance Issues -
Cache &BandwidthCache &Bandwidth

♦ Performance instability
„ Small changes in the architecture may cause dramatic

changes in delivered performance.
♦ Latency tolerant and bandwidth parsimonious algorithms

and software are critical
„ Sometimes this means recompute rather than

store/load
♦ Need to help the compiler
♦ Have a hard time today getting performance

„ Only going to get harder
♦ Level 3 BLAS as a starting point

7

How To Get PerformanceHow To Get Performance
From Commodity Processors?From Commodity Processors?

♦ Today’s processors can achieve high-performance, but this requires
extensive machine-specific hand tuning.

♦ Hardware and software have a large design space w/many parameters
„ Blocking sizes, loop nesting permutations, loop unrolling depths,

software pipelining strategies, register allocations, and instruction
schedules.

„ Complicated interactions with the increasingly sophisticated micro-
architectures of new microprocessors.

♦ About a year ago no tuned BLAS for Pentium for Linux.
♦ Need for quick/dynamic deployment of optimized routines.
♦ ATLAS - Automatic Tuned Linear Algebra Software

„ PhiPac from Berkeley
„ FFTW from MIT (http://www.fftw.org)

8

ATLASATLAS

♦ An adaptive software architecture
„ High-performance
„ Portability
„ Elegance

♦ ATLAS is faster than all other portable BLAS
implementations and it is comparable with
machine-specific libraries provided by the
vendor.

9

ATLASATLAS

♦ ATLAS is faster than all other portable BLAS
implementations and it is comparable with
machine-specific libraries provided by the
vendor.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

DCG L
X 2

11
64

a-
53

3

DEC A
lp

ha
 2

11
64

a-
43

3

HP P
A80

00
 1

80
M

hz

HP9000/7
35/1

25

IB
M

 P
ow

er
2-

13
5

IB
M

 P
ow

er
PC 6

04
e-

33
2

Pen
tiu

m
 M

M
X-1

50

Pen
tiu

m
 P

ro
-2

00

Pen
tiu

m
 I

I-2
66

SGI R
46

00
SGI R

50
00

SG
I

R80
00

ip
21

SG
I

R10
00

0i
p2

7

Sun
 M

icr
os

pa
rc

 II
 M

od
el

 7
0

Sun
 D

ar
win

-2
70

Sun
 U

ltr
a2

 M
od

el
 2

20
0

M
F

L
O

P
S

Vendor Matrix Multiply ATLAS Matrix Multiply F77 BLAS

10

Why ATLAS Is Fast?Why ATLAS Is Fast?

♦ ATLAS does not implement a single fixed algorithm.
♦ The code is generated by a program that tests, probes,

and runs 100’s of experiments on the target sw/hw
architecture.

♦ During installation the program generator determines an
efficient implementation
„ measures the speed of different code strategies and

chooses the best using an adaptive procedure.
♦ This leads to a new model of high performance

programming in which performance critical code is
machine generated using parameter optimization.

11

Why Adaptive Programs?Why Adaptive Programs?

♦ Critical software that realizes near peak performance
requires detail knowledge of a host of interlocking and
competing factors.

♦ Performance can differ by factors of 10,even 100.
♦ Tuning even the simplest operation generally requires an

intense and sustained effort by highly technically
advanced programmers.

♦ Present day architectures are complicated, making
predictability difficult, experimentation is a reliable way
to achieve near peak performance.

M C A B

N

K

N

M

K

*NB

Adaptive Approach forAdaptive Approach for
Level 3 BLASLevel 3 BLAS
♦ Do a parameter study of the operation on the

target machine, done once.
♦ Only generated code is on-chip multiply
♦ BLAS operation written in terms of generated

on-chip multiply
♦ All tranpose cases coerced through data copy

to 1 case of on-chip multiply
„ Only 1 case generated per platform

13

Code GenerationCode Generation
 Strategy Strategy

♦ Code is iteratively
generated & timed
until optimal case is
found. We try:
„ Differing NBs
„ Breaking false

dependencies
„ M, N and K loop

unrolling

♦ On-chip multiply
optimizes for:
„ TLB access
„ L1 cache reuse
„ FP unit usage
„ Memory fetch
„ Register reuse
„ Loop overhead

minimization
♦ Takes a couple of

hours to run.

14

ATLAS 500x500 DGEMMATLAS 500x500 DGEMM
Across Various ArchitecturesAcross Various Architectures

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

DCG L
X 2

11
64

a-
53

3

DEC A
lp

ha
 2

11
64

a-
43

3

HP P
A80

00
 1

80
M

hz

HP9000/7
35/1

25

IB
M

 P
ow

er
2-

13
5

IB
M

 P
ow

er
PC 6

04
e-

33
2

Pen
tiu

m
 M

M
X-1

50

Pen
tiu

m
 P

ro
-2

00

Pen
tiu

m
 I

I-2
66

SGI R
46

00
SGI R

50
00

SG
I

R80
00

ip
21

SG
I

R10
00

0i
p2

7

Sun
 M

icr
os

pa
rc

 II
 M

od
el

 7
0

Sun
 D

ar
win

-2
70

Sun
 U

ltr
a2

 M
od

el
 2

20
0

M
F

L
O

P
S

Vendor Matrix Multiply ATLAS Matrix Multiply F77 BLAS

15

500 x 500 LU Right-Looking500 x 500 LU Right-Looking

0

100

200

300

400

500

600

700

DCG L
X 2

11
64

a-
53

3

DEC A
lp

ha
21

16
4-

43
3

DEC A
lp

ha
21

26
4-

50
0

HP P
A80

00
IB

M
 P

ower
3-

20
0

In
te

l P
II-

26
6

SGI R
10

00
0-

19
5

Sun U
ltr

aS
par

c2
20

0

M
F

L
O

P
S

Vendor LU ATLAS LU LU w/Reference BLAS

16

Recursive Approach forRecursive Approach for
Other Level 3 BLASOther Level 3 BLAS

♦ Recur down to L1
cache block size

♦ Need kernel at
bottom of
recursion
„ Use gemm-based

kernel for
portability

Recursive TRMM

00

0

0
0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

17

500x500 Recursive BLAS500x500 Recursive BLAS
on on UltraSparcUltraSparc 2200 2200

0

50

100

150

200

250

300

350

400

DGEMM DSYMM DSYRK DSYR2K DTRMM DTRSM

Level 3 BLAS Routine

M
F

L
O

P
S

Vendor BLAS ATLAS/GEMM-based BLAS Reference BLAS

18

500x500 Recursive BLAS on 433Mhz DEC 21164500x500 Recursive BLAS on 433Mhz DEC 21164

0

100

200

300

400

500

600

DGEMM DSYMM DSYRK DSYR2K DTRMM DTRSM

M
F

L
O

P
S

Vendor BLAS ATLAS/GEMM-based BLAS Reference BLAS

19

Multithreaded BLAS forMultithreaded BLAS for
PerformancePerformance

Intel Pentium II 300 MHz

0
50

100
150
200
250
300
350
400

10
0

30
0

50
0

70
0

90
0

Orde r of vector/Ma trice s

M
fl

o
p

/s

ATLAS 2 procs

ATLAS 1 proc
Intel BLAS

20

ATLASATLAS

♦ Needs a reasonable C compiler and is focused
on super scalar (RISC) architectures.

♦ Available today: www.netlib.org/atlas/
♦ Keep a repository of kernels for specific

machines.
♦ Extend work to allow sparse matrix operations
♦ Extend work to include arbitrary code

segments

21

Future Plans for ATLASFuture Plans for ATLAS

♦ Level 1 and 2 implementations
♦ Threading
♦ Runtime adaptation

„ Sparsity analysis
„ Iterative code improvement

♦ Adaptive libraries
♦ Specialization for user applications
♦ Extend these ideas to Java directly

„ Java LAPACK

22

Contributors to These IdeasContributors to These Ideas
♦ Antoine Petitet, UTK
♦ Clint Whaley, UTK

♦ For additional information see…
icl.cs.utk.edu/
www.netlib.org/atlas/
www.netlib.org/utk/people/JackDongarra/

ATLAS received an R&D 100 Award this year

